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LONGITUDINAL IMPACT ON A CIRCULAR
CYLINDRICAL TUBE

J. L. SACKMANt and W. GOLDSMITHt

University of California, Berkeley, California

Abstract-The longitudinal strain histories produced by impact in a long circular cylindrical tube are determined
using membrane shell theory. Solutions are generated by a method which reformulates the boundary value
problem in terms of Volterra integral equations which are then numerically resolved. The predicted histories are
compared with strain histories measured in a corresponding experiment, and the correlation is found to be better
than that based on histories predicted from elementary rod theory corrected to account for lateral inertia.

INTRODUCTION

IN Arecent paper, Goldsmith et al. [1] investigated the propagating strain pulses produced
by longitudinal impact on a long circular cylindrical tube. Measurements were made of
the longitudinal strain histories at five different stations along the tube resulting from the
first passage of the pulse down the cylinder. These experimental data were then compared
to theoretical predictions of the strain histories. The predictions were obtained by con
sidering a close fit of the data at the station nearest the impacted end of the tube to be the
prescribed input, and then calculating the resulting output at the four downrange stations.
These calculations were based on elementary rod theory, corrected to account for lateral
inertia according to the procedure given by Rayleigh. The correlation obtained between the
experimental data and the theoretical predictions was, in general, good. However, there
remained discrepancies which could not be relegated to experimental or computational
error, but which were probably due to deficiencies in the mathematical model used to
describe the wave propagation phenomenon resulting from impact. To effect an improve
ment in the correlation between the data and theoretical predictions, it would appear
necessary to utilize a more refined theory than that employed in [I]. In this paper we
investigate the consequences of employing membrane shell theory to model the behavior
of the tube by comparing the predictions of the longitudinal strain histories at the four
downrange stations based on that theory to those which were actually measured there,
as reported in [1]. We obtain the predicted strain histories by using a calculational pro
cedure based on a convenient method of analysis of pulse propagation problems which
employs Volterra integral equations.
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ANALYSIS

According to membrane shell theory, the equations governing the axially symmetric
motion of a circular cylindrical tube are

auz
G =-'

z (lz ' (1)

where, in the usual notation, u, G and (J represent, respectively, the displacement strain and
stress, z the coordinate along the axis of the shell, rand () the polar coordinates in the
plane of the circular cross-section of the shell and t the time. The radius of the shell is
signified by R, p is the density of the shell material and E and v are, respectively, Young's
modulus and Poisson'8 ratio of the shell material.

The Laplace transform of the longitudinal strain at any station z in the tube is obtained
as

where GAO, t) is the longitudinal strain at z = 0, and

[ (
p2 +!X2) ]

f(z, p) = exp - plcJ p2 + {32 Z

(2)

(3)

!X = elR.

The signal velocity in the tube is given by

(4)

(5)

Here we are concerned only with the solution which represents the first passage of the
pulse down the tube. In the above we have used a superposed bar to indicate the Laplace
transform of a function with respect to the time variable, with p representing the transform
parameter.

To invert equation (2), we begin by noting that we can rewrite J as

where

with

J = e~Pz/ch(z, p)

h(z, p) = e-(pz/c)g

(6)

(7)

(8)
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(9)

By squaring equation (8) and inverting we obtain

S
t IXV2

2g(t) + get - r)g(r) dr =.j 2) sin pt.
o (l-v

This nonlinear Volterra integral equation of the second kind can be inverted readily by
numerical means to yield the function get).

From the properties of the exponential we see that

where

with

h(Z, p) = 1+hR(Z, p) (10)

(11)

(12)

(13)

A superposed dot is used to represent differentiation with respect to time. If now we dif
ferentiate equation (7) with respect to the transform parameter p, we obtain

ahR(Z, p) Z d _a = -- -d [Pg(p)]h(Z, p).
pcp

This equation can be inverted into the time domain to give the Volterra integral equation
of the third kind

(14)

Having get) from the resolution of (9) and knowing hR(z,O) from (12), equation (14) is
easily resolved numerically to obtain the function hR(z, t) for any choice of z. With hR(z, t)
in hand we may now solve for the longitudinal strain Bz(Z, t) by combining equations (2),
(6) and (10). The result is

where

B*(Z, t) = Bz(O, t) + {Bz(O, t - r)hR(z, r) dr.

(15)

(16)

(17)

In summary, the inversion of equation (2) is performed by first obtaining get) from a
numerical resolution of(9). Then, using equation (12), equation (14) is numerically resolved
to obtain hR(z, t) for the value of Z of interest. Next the convolution integral in equation (16)
is numerically evaluated to yield B*(Z, t). Finally Bz(Z, t) is obtained from equation (15).

For later discussion it is convenient to also have the hoop strain Biz, t). It may be
obtained from equation (1) in terms of the longitudinal strain. The result is

Bo(Z, t) = -IXV { Bz(Z, r) sin lX(t-r) dr.
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DISCUSSION

The way we used the data of Ref. [I] was to consider a close fit of the measured longitu
dinal strain at the station nearest the impact end (hereafter denoted as the base station) as
prescribing the function ez(O, t) (see Fig. 1l. With this known input history we used the
preceding analysis to predict the strain ezfz, t) at each of the downrange stations located a
distance z from the base station (the corresponding values of z were z = 20, 40. 60 and
80 in.) and then compared these results with the strains actually measured at these stations.
These comparisons are given in Figs. 2-5. The measured strain history at the base station
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FIG, 3. Theoretical and experimental longitudinal strain-time curves for a straight tube due to concentric
longitudinal impact by a t in, diameter steel sphere at an initial velocity of 1390 in,!sec, Station 3,

z = 40 in,

is given in Fig. 1, along with the approximation of it (denoted in the figure as 'Theory")
which we used in our computation of the theoretical predictions at the four downrange
stations.

The outer diameter and wall thickness of the tube used in the experiment were 1 and
0·035 in., respectively. The mechanical properties of the 2024 aluminum used in our
computations were: density = 0·100 Ib/in. 3

, v = 0·322 and c = 0·2145 in.11l sec. We took
for R (to be used in the membrane shell theory) the value of! in. Our choice of v and c was
obtained from some numerical experimentation based on an attempt to optimize the
correlation between the predicted and measured longitudinal strain histories.
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It may be seen from the figures that at all four downrange stations the correlation
between the experimental results and the theoretical predictions based on membrane shell
theory is quite good. These results represent an improvement over the correlation obtained
when the theoretical predictions were based on elementary rod theory including Rayleigh's
correction for lateral inertia. As a check on our numerical computation, we also calculated
the response histories by numerically solving the partial differential equations (1) using the
method of characteristics. Within plotting accuracy, no discernible differences between
the two sets of computed values were noted.

After calculating ez(z, t), we next used equation (17) to compute the hoop strain history
eJz, t). The results obtained were interesting. At each station, the hoop strain history had a
shape almost identical to the longitudinal strain history. However, the ratio of the maximum
value of elJ to that of Sz at each station was always larger than Poisson's ratio and decreased
as z increased. For the particular example considered in Figs. 2-5 this ratio for z = 20,40,
60 and 80 in. was approximately 0·38, 0·37, 0·36 and 0·35, respectively. This computed
behavior is in accord with the phenomenon actually observed in the experiments reported
in [1].

In closing, we note that we also computed the longitudinal strain history ez{z, t) cor
responding to a step function input [i.e. for sz(O, t) = H(t), where H(t) is the Heaviside step
function]. It is interesting to observe that for large values of z, the rich structure of this
computed history was very similar in form to the longitudinal stress history caused by a
constant velocity impact of a circular cylindrical tube against a rigid obstacle as reported
by Berkowitz [2] for stations far from the impact end. He obtained his solution (also based
on membrane shell theory) by the use of integral transforms and approximate inversions
carried out by means of asymptotic methods.
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A6cTpaKT-nOnb3yllcb Teoplleil: 6e3MoMeHTHbIx o60nO'leK, orrpe.L\enlllOTCll HCTOpHH l\ecl>0pMal\Hit YMH
HeHlIlI, BbI3BaHHblX YJlapOM rro JlJlIIHHOil:. Kpyrnoit, UIIJlIIHJlPH'IeCKoit Tpy6e. 0606walOTclI peweHHlI
MeTOJlOM rrpeo6pa30BbIBalOWIIM 3a.L\a'lll KpaeBoro ycnoBHlI B BbIpalKeHHlIx HHTerpanbHbIx ypaBHeHHit
BonbTeppl\, KOTopble, 3aTeM pewalOTclI 'IHCneHHO. CpaBHHBalOTclI rrpe.L\ycMaTpHBaeMbIe HCTOpHH C
HCTOpllllMH .L\ecl>opMal\lIl1, 113MepeHHbIMII B cooTBycTBylOweM OrrbITe. nony'laeTclI ny'lwall CXO.L\IIMOCTb
'IeM oCHoBaHHoit Ha IICTOPIIllX BbITeKalOWIIX 111 3neMeHTapHoit Teopllll CTeplKHlI, yTo'lHeHHoit y'leToM
rrOBepXHocTHoil: IIHepUIIII.


